
 

 

Computer Based War Gaming: Recollections After Twenty 
Years 

Todd Mason  

Kriegspiel Developments 

masont@bigpond.com 

Abstract.  The Australian Army began transitioning from manual war gaming to computer assisted and computer 
based war gaming in the late 1980s. Since then, computer based war games have been used for a variety of training 

and capability development tasks. One of the most successful systems is Janus(AS), which, since 1990, has been 

continuously enhanced and used for a range of tasks. This paper will highlight some of the factors that contributed to 

its success and identify lessons learned. 

1. BACKGROUND 

Janus was initially developed by the Lawrence 

Livermore National Laboratory in the 1970s to model 

nuclear effects on the battlefield. A number of versions 

were subsequently developed until 1989 when TRAC 

WSMR (along with other agencies) developed a 

‘standard’ version called Janus(T)1. In 1990, the 

Australian Army procured version 1.0 of Janus(T) as an 

analytical tool to support capability and force structure 

experimentation. This became known as Janus(AS). 

Janus is a multi-sided, multi-user, event stepped, 

networked, stochastic, constructive simulation of land 

and joint combat aimed at the combat team to brigade 

level. Strictly speaking, Janus is both the simulation 

software itself and a suite of support tools including:  a 

database editor, terrain editor, scenario editor and replay 

tool. 

The first activity to use Janus(AS) was Exercise 

Cyclops Dilemma in October 1990. This activity was as 

much a trial of the system and staff as it was an actual 

analytical study. The scenario was based on an infantry 

battalion providing vital asset protection to RAAF base 

Tindal against a low level enemy raider group. A 

number of 'runs' of the scenario were conducted with 

the defenders equipped with differing mixes of 

surveillance equipment. 

For that exercise, a number of enhancements were made 

to the software including: multi-stage observation, 

neutral forces, disguised enemy, explosive devices and 

filtering of post-processor data for analysis. 

This determined the standard method for development 

in support of experimental exercises. Between 1990 and 

the end of 1992, a further three analytical exercises 

were conducted with another one scheduled for early 

1993. Analytical exercises were planned well in 

advance and software modification and testing was 

conducted in a fairly orderly, linear manner, with 

considerable assistance from staff from DSTO and other 

Defence agencies. 

                                                        

1
 See ‘History of Operations Research in the US Army’. Charles R. 

Shrader 

However, at the beginning of 1993, following on from 

experience in the US, Australia decided to trial 

Janus(AS) as a training tool. This generated a 

completely new set of stresses on the development 

process. Initially, the database did not support the 

expanded variety of equipment required to support 

brigade level combat. Additionally, many of the models 

in Janus(AS) had never been used and needed to be 

tested and understood. 

The first training activity, in early 1993, was in support 

of the School of Armour and an initial attempt at a 

combined arms course.2 This activity highlighted many 

problems with the system, but was evidently successful 

enough to demonstrate the potential for further use. The 

most significant lesson, however, was the realisation 

that training activities would require a completely 

different approach to the development of the software. 

From 1993 onwards, analytical studies and experiments 

continued to be conducted, including support for the 

Restructuring The Army (RTA) trials in 1997 and 

Headline Experiments from 1999 onwards. However, 

training became the dominant usage, with all arms corps 

schools using Janus(AS) by the end of 1996. Plans were 

also developed to establish regional simulation centres 

to support unit training, that would use Janus(AS) and 

other systems as they became available. 

In 1999, Janus(AS) was briefly replaced by another US 

developed Janus variant, known as Simitar [sic]. 

However, this was found to have a number of serious 

problems, and the users chose to return to Janus(AS) in 

2001 when it was ported to Linux. 

2. USAGE 

In the analytical role, Janus(AS) has been used to 

support studies examining mobility, surveillance, 

uninhabited aerial vehicles, infantry firepower, 

motorised brigade force structure, littoral operations, 

and urban operations.  

In the training role, Janus(AS) has supported Infantry, 
Armour, Engineer, Aviation and Artillery corps training 

activities at the Regimental Officer Basic Course 

                                                        
2
 This activity eventually evolved into the current Combat Officers 

Advanced Course (COAC). 



 

 

(ROBC) and Regimental Officer Advanced Course 

(ROAC) level as well as combined arms training within 

the COAC. It has been used to support staff officer 

training at the Army Staff College and at Canungra. It 

was used to support a multi-national brigade Command 

Post Exercise (CPX) during Exercise Kangaroo 95. 

Throughout its life, Janus(AS) proved to be extremely 

flexible. Janus is designed around a series of data driven 

models. For example, the direct fire lethality model uses 

lookup tables holding probability of hit and probability 

of kill data. These tables allow a great variety of 

lethality curves to be represented in an easily 

understood manner. Assuming the data is available, 

adding new systems to the database is generally a trivial 
exercise. Additionally, many of the models are 

stochastic, or probability based, which makes 

converting expected outcome to input data relatively 

easy to understand. The ease with which the data 

models could be explained to users greatly helped their 

understanding of how the system worked and also 

helped them provide suitable input data. 

3. SOFTWARE CHANGES 

3.1 Community Development 

From the start, it was expected Australia would develop 

our own version of Janus, or at least our own 

subsystems. The UK had already developed their own 

version and Canada acquired Janus at approximately the 

same time as Australia. Within the US, while WSMR 

maintained the baseline version, there were multiple 

versions that had been developed for different purposes 

at different laboratories. There was a desire amongst the 

international community to be able to exchange 

software, data and ideas, but the practicality of that was 
limited. 

Australia sent representatives from the Army and DSTO 

to each of the international user group meetings 

between 1990 and 1999 and in 2003. It was a condition 

of the memorandum with the US that Australian code 

changes were made available to the US team. 

The only Australian model that was ever directly 

incorporated back into the US baseline was the multi-

stage observation level algorithm. This replaced the 

simple 'detected or not detected' model with a more 

nuanced version with three observations states: 

detected, recognised and identified; where each state 

provided slightly more information about the target. 

Cooperation was not restricted to swapping code. Many 

ideas were exchanged between the various developer 

groups. Australia certainly benefitted from this 

arrangement. For example: the UK team developed a 

new method for passing information to and from the 

graphical user interface which was adapted for use in 

the Australian version; and the US team developed an 

urban terrain model that formed the basis of the model 

used in a series of Headline Experiments between 2003 

and 2006. 

In 1995, the Australian team installed Janus(AS) on the 

computers at White Sands Missile Range where it was 

demonstrated to the international community at the 

Janus User Group Meeting. This was the first time an 

international version was demonstrated to the group and 

was received with considerable interest. Subsequent 
meetings were renamed ‘user fairs’ and included a 

significant amount of time allocated to demonstrations. 

3.2 Australian Development 

The list of Australian developments is quite extensive. 

To date, they have only been published in the 

proceedings of the Janus User Group Meetings, but 

even that is only complete up to 1999. Internal ASW 

documents exist describing individual changes, and the 
user documentation was maintained describing the 

overall latest functional state. However, as ASW no 

longer reported changes back to the US, no consolidated 

change log was maintained. 

Some of the uniquely Australian developments include: 

Improved aircraft flight profiles.3 

Multi-mode RADAR. 

Active defence systems. 

Complex minefields. 

Formation movement. 

Maritime/ littoral movement. 

Suppression. 

Activity nodes. 

Area weapon effects. 

Stimulation of BCSS and 3D display. 

Agent based artificial intelligence module. 

4. DEVELOPMENT METHOD 

4.1 Analytical Development 

The model used for development to support analytical 
activities was the traditional maintenance model where 

a new requirement was identified, designed, coded and 

tested at a relaxed pace. These types of exercises were 

planned many months in advance and a detailed 

development and test schedule was established. Even in 

later years, once training had become the dominant 

driver of change, analytical enhancements typically had 

the luxury of time.  

4.1.1 Structural Improvements 

The relatively long timelines available for development 

facilitated the development of standards in coding and 

engineering that greatly contributed to the longevity of 

                                                        
3
 The Australian version was selected by a student at the US Naval 

Post Graduate School to support his thesis because of the enhanced 

flight profile model. 



 

 

the system. The three principal methods were 

modularity, data hiding and named constants4. 

A number of early problems found with Janus were due 

to side effects of changing code. A side effect, is where 

a change in one section of code, causes an unintended 

change somewhere else. To combat that, proposed 

functional changes were implemented by re-engineering 

the code so as to separate code into smaller functions 

that performed discrete tasks. The major models, such 

as the detection model and the direct fire model, were 

reviewed to ensure that they did not interact at a low 

level, but communicated at a high level via passing of 

semaphores and messages. 

Whenever a new feature required a change to a data 

structure, rather than just changing the structure and any 

code that referenced it, a set of functions were created 

to allow interaction with the data. This meant that future 

changes to the data structure would require minimal 

code changes. For example, in 1992, we were required 

to make significant changes to the terrain model to 

support maritime and littoral operation. This resulted in 
all direct access to the terrain data model being replaced 

by an extensive set of functions. When, in 2001, a 

completely new terrain model was adopted from one of 

the US versions of Janus, only the functions in the 

terrain library needed to be changed, leaving the main 

simulation code unaltered.  

Throughout the original code, literal numeric constants 

abounded. Whenever these were encountered, they were 
replaced with named numeric constants. This has the 

effect of making the code easier to understand, but also 

allows changes to be made with lower risk of mistakes. 

The only independent review of the Janus(AS) code was 

performed in 19965. Although it identified some areas 

for further improvement, it concluded that the effort to 

date represented an advance on the US supplied code 

and that future maintainability had been greatly 
improved.  

4.1.2 Teamwork 

The team that initially established Janus(AS) was drawn 

from a variety of backgrounds. It included military 

personnel from a variety of corps, DSTO scientists, 

Defence public servants and contractors. This team was 

very well supported by other Defence organisations. For 
example, scientists from what was then the Army 

Engineering Development Establishment (EDE)6 

assisted in the development of a high resolution 

mobility model that was used to support two mobility 

studies in 1991 and 1992. 

                                                        
4
 These are all pretty standard engineering approaches. Their use here 

reinforces how important they can be. Their lack, is not an indictment 

on the original software, it merely reflects the memory and speed 

constraints imposed by earlier hardware limitations when Janus was 
first developed. 

5 A consultant from Adacel was contracted to produce a report 

comparing Janus(AS) with the latest version of Janus from the US. 

6
 Now Land Engineering Agency. 

The collegial approach set the pattern that was 

continued throughout the development of Janus(AS). It 

also established the credibility of the core team.  

4.2 Training Development 

In 1993, the Janus(AS) team spent over 5 months of the 

year at interstate training establishments supporting 

courses and building a customer base. Unlike the 

analysts, who had many months to experiment with 

Janus(AS) and build confidence and an understanding 

of its behaviour, the trainers were lucky to have a day or 

two of familiarisation before they needed to begin 

developing a scenario and start user training. Credibility 

issues gained an inflated importance as students latched 

onto any failure to model a capability important to their 
plan. 

The pace of the training schedule, the variety in 

customers and requirements, the limited knowledge 

customers had of simulation and the limited knowledge 

the technical team had of customer business all resulted 

in a need to change the way the software was 

developed. A conscious decision was made to adopt an 
evolutionary development model, where small high 

priority changes would be made as frequently as 

possible. This was combined with a time box approach 

to managing delivery schedules. Prototyping and ‘test as 

you go’ were heavily relied upon to ensure the 

development was heading in the right direction and to 

maintain user involvement. 

Evolutionary development acknowledges that many 
things will change during the life of a development 

project. The customer base is changeable in the best of 

circumstances, but the military posting cycle introduces 

considerable variation in staff, from senior leadership 

down. Changes in doctrine, equipment and operational 

emphasis drove changes in development priority. 

Additionally, each change to the system effectively 

constituted a change in the environment necessitating 

frequent re-evaluation of the priorities. Each change 

opened doors to new opportunities that may not have 

previously been apparent. 

4.2.1 Tracing 

In 1993, a major effort was applied to developing a 

credible combined arms database and testing existing 

models. As part of this testing process, an extensive 

system of in-code tracing was introduced. With this 

tool, the internal calculations being performed by the 

software could be checked.  

Initially, this was used merely to gain an understanding 

of how the system worked. For example, in 1994, 

Janus(AS) was used to support the Army School of 

Engineers, but the mine clearing model had never been 

used before and no one knew exactly how it worked. 

The ability to create test scenarios and run the tracing 

system proved invaluable in understanding the existing 

functionality. More importantly, it provided the 

foundation for working with the subject matter experts 
to establish credibility and to develop additional 

functionality. 



 

 

4.2.2 Customer Focus 

The military trainers and instructors, were central to the 
development process. It was critical that they 

understood how the software could be used to support 

training and what improvements were feasible. The 

ability of the development team to deliver promised 

improvements not only enhanced their credibility, but 

made it easier to negotiate difficult requirements. 

The development was facilitated by frequent visits to 

the user site, such as the school of armour. Often, such 
visits included demonstrations of real equipment such 

as tank bridge laying equipment.  

4.2.3 Prototyping 

An important element used to capture user requirements 

was the use of prototyping. Often a prototype was built 

as soon as an enhancement request was made. The 

benefit of a prototype was that users could immediately 

identify crucial features and confirm that the developers 
understood the essential elements of the request. For 

developers, the prototype served as a means of 

reflecting back to the user their description of the 

problem. The fact that developers and users could be 

physically collocated so often was incredibly valuable 

in reducing the risk of misunderstandings. 

4.2.4 Time Box 

The time box development process is used when 

delivery schedules are immutable. Training exercises 

were planned months in advance and need to fit in with 

student (and their parent unit) schedules. Unlike an 

analytical activity, a given training scenario may only 

be run once with no scope for re-running it if a problem 

occurs. 

Change requests were prioritised with the user and then 
worked on in order until the development window was 

reached. Typically, requests were categorised as either 

‘must have’, ‘desirable’ and ‘wishful thinking’. Then 

testing and other pre-exercise activities were conducted. 

This means that it was not always possible to deliver all 

of the desired functionality in a given build. However, 

in most development windows between 1994 and 2009, 

not only were ‘desirable’ functions often implemented, 

but ‘wishful’ ones were as well. 

The time box process is also important in restraining 

scope creep, which can be a risk with iterative 

development methodologies. 

4.2.5 Teamwork 

A crucial element that contributed the success of 

Janus(AS) was teamwork. This not only included the 
members of the direct support team, but the extra staff 

who supported exercises. Most importantly it included 

the users and other subject matter experts who 

contributed their time and expertise to problem solving.  

For example: 

In 1993, instructors from the School of Armour and 
School of Infantry assisted in developing a 

suppression model. 

In 1994, instructors from the School of Engineers 

worked with the developers to code new behaviours 

for the mine clearing model. 

In 1995, a group of cavalry officers helped develop 

and test a casualty evacuation model. 

In 1996, officers from the School of Artillery 

worked at the AWGC to define the requirements for 

the indirect fire user interface, develop a prototype 

model and test the final version. 

4.2.6 Documentation 

When Janus(AS) was purely used for analysis, it was 

typical for comprehensive technical documentation to 

be produced. Often, this was done by DSTO scientific 

and analytical staff for publication. 

In the training domain, there was little need for complex 

technical documentation. Users did not require detailed 

documentation beyond a basic operator manual and 

training guides and hindsight has shown that what 

technical documentation was produced was rarely read. 

The training team did not receive the same degree of 

scientific support that analytical exercises did. 
Therefore, DSTO did not produce any scientific papers 

based on training developments. 

A basic change summary was maintained for the 

purposes of reporting to the Janus User Group. This was 

supported by the code revision control system (CMS) 

and software versioning. The internal tracing system 

was used to supply supporting technical documentation. 

The user manual and training material were regularly 

updated by military training staff. A system manual, 

that included installation and setup procedures, was also 

maintained, but did not require frequent updating. 

In hindsight, greater emphasis should have been placed 
on requirements tracing. A simple running log of 

‘outstanding requirements’ was maintained by the team 

manager. The details of the user requirements 

themselves were usually only contained in post exercise 

reports. It was possible to continually review these 

reports while the team remained small. However, once 

these documents were ‘archived’, that historical record 

was effectively lost. 

4.2.7 Metrics 

A weakness in the management of Janus(AS) 

development was the lack of documented measurement 

of success. No records were kept regarding the number 

of user requests satisfied or the hours expended. To a 

degree, some of this information could have been 

extracted from the software revision control repository. 

However, its absence subsequently made it difficult to 

substantiate what had been done without recourse to 

minute technical detail. 



 

 

4.2.8 Marketing 

In 1993 and 1994, a significant effort was made to 
market Janus(AS) to the training community. This 

resulted in extensive use amongst a broad cross-section 

of the Army. This possibly remains the most successful 

promotion of Army computer based war gaming in 

Australia. 

However, this effort was not sustained. As the 

incumbent system, Janus(AS) suffered the effects of 

vested interests attempting to promote a variety of 
alternatives. In some cases, the sheer longevity of 

Janus(AS) worked against it as many people were often 

heard to remark ‘oh, you’re still using Janus’. 

The continued Australian enhancements were not 

advertised beyond the small group supporting the 

system and a handful of similar international teams. 

After 1999, even the international teams were not 

regularly kept abreast of Australian developments. For 
example, Janus(AS) developments have never been 

reported at SimTecT. 

5. OBSERVATIONS 

Teamwork was the most critical element that 

contributed to the success of Janus(AS). The 

involvement of users in all stages of the development 

process meant that solutions were focused on the actual 
user need. The use of prototypes and user testing greatly 

helped overcome communication issues between 

military subject matter experts and developers. 

This was made possible by the efficiency inherent in a 

small organisation such as the Australian Army. It was 

possible to co-locate small work groups to focus on a 

problem and apply the insights that different disciplines 

brought to the situation. This created a fertile ground for 
exploring novel solutions and ensuring that the most 

important problems were being addressed. It also 

ensured that all ideas were subjected to broad scrutiny 

to minimize the effects of biases.  

The involvement of users produced a sense of 

ownership of the solution. This meant they went out of 

their way to provide information and assistance. They 

were encouraged to offer constructive criticism to 
improve the software and they became actively 

involved in testing. 

Similarly, the developers gained a sense of ownership 

of the exercise. The success of the activity became the 

measure of success for the whole project. This ensured 

that ‘tees were crossed’ and details were not 

overlooked. 

The software design approach of ‘engineering for 

change’ facilitated the evolutionary development 

method. The foundation of the software lent itself to 

prototyping. The inherent flexibility generated 

confidence that the software and the team could deliver 

the required capabilities. 

Developing simple models, often using lookup tables 

and probability values, proved both intuitive and simple 

to develop. They are easily explained to users and 

straightforward to enhance. The use of in-code tracing 

also greatly helped explain the models to users and 

highlighted their assumptions and limitations. 

Minimising the effort expended on documentation 

resulted in more resources available to test and develop 

the software and support user activities. In hindsight, 

more effort should have been expended on 

consolidating user requirements. Additionally, the 

failure to publicise successes left critics free to set the 

agenda. 

The evolutionary development methodology proved 

well suited to the situation where detailed long term 

requirements were undefined and rapidly changing. The 

nature of simulation based training is complimented by 

a user focused development approach. 

 


